1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
alonzocuellar edited this page 2025-03-01 10:46:31 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes support learning to boost thinking abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial distinguishing feature is its reinforcement knowing (RL) step, which was utilized to refine the design's actions beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adapt more effectively to user feedback and goals, eventually boosting both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's geared up to break down complex inquiries and reason through them in a detailed way. This assisted reasoning process enables the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the market's attention as a versatile text-generation model that can be integrated into different workflows such as agents, logical reasoning and data interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion specifications, allowing effective reasoning by routing queries to the most relevant professional "clusters." This technique permits the design to concentrate on various issue domains while maintaining overall efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate designs against crucial security requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, develop a limitation boost request and reach out to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Establish consents to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid harmful material, and assess models against essential safety criteria. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and yewiki.org select the DeepSeek-R1 design.

The design detail page offers vital details about the design's abilities, pricing structure, and execution standards. You can find detailed use instructions, including sample API calls and code snippets for integration. The model supports various text generation tasks, consisting of content production, code generation, and concern answering, using its reinforcement discovering optimization and CoT reasoning abilities. The page likewise includes implementation options and licensing details to help you get started with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of instances (in between 1-100). 6. For Instance type, select your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function permissions, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play area to access an interactive user interface where you can explore various triggers and adjust model parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal results. For instance, material for reasoning.

This is an excellent way to check out the model's reasoning and text generation abilities before integrating it into your applications. The playground supplies instant feedback, assisting you understand how the design reacts to various inputs and letting you tweak your prompts for optimum results.

You can quickly test the model in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, systemcheck-wiki.de configures inference specifications, and sends out a demand larsaluarna.se to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 convenient techniques: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you select the approach that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser displays available models, with details like the supplier name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows key details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if relevant), indicating that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to see the design details page.

    The model details page includes the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the design, it's advised to review the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the instantly produced name or produce a custom one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the number of instances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take numerous minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the model is ready to accept inference demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design using Amazon Bedrock Marketplace, hb9lc.org total the following actions:

    1. On the Amazon Bedrock console, under models in the navigation pane, pick Marketplace implementations.
  5. In the Managed deployments section, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, hb9lc.org we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious services using AWS services and sped up calculate. Currently, he is focused on developing strategies for fine-tuning and enhancing the reasoning performance of big language designs. In his leisure time, Vivek delights in treking, watching motion pictures, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing services that help clients accelerate their AI journey and unlock organization value.