1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
careyhernsheim edited this page 2025-02-07 14:10:39 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement discovering to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing function is its support knowing (RL) action, which was utilized to refine the model's reactions beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually improving both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, suggesting it's equipped to break down complicated queries and reason through them in a detailed way. This guided reasoning process allows the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation model that can be incorporated into numerous workflows such as agents, sensible thinking and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, allowing effective inference by routing queries to the most relevant professional "clusters." This method permits the model to specialize in various issue domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to simulate the habits and reasoning patterns of the bigger DeepSeek-R1 model, using it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and examine models against key security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, develop a limitation boost request and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Set up permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid hazardous content, and examine models against essential safety criteria. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The involves the following steps: systemcheck-wiki.de First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The design detail page supplies necessary details about the model's abilities, rates structure, and implementation guidelines. You can discover detailed use directions, consisting of sample API calls and code snippets for combination. The design supports different text generation tasks, including content production, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page also includes release alternatives and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, get in a variety of instances (in between 1-100). 6. For Instance type, pick your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you may desire to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive interface where you can try out various triggers and change model specifications like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For instance, material for reasoning.

This is an excellent way to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play ground provides instant feedback, helping you comprehend how the model responds to various inputs and letting you fine-tune your prompts for optimal results.

You can rapidly check the design in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and wiki.dulovic.tech ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and hb9lc.org prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 hassle-free methods: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you choose the approach that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design web browser displays available designs, with details like the company name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows key details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), suggesting that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The model name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you release the design, it's advised to review the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the automatically produced name or produce a customized one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting proper circumstances types and counts is essential for expense and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the model.

    The release process can take several minutes to complete.

    When implementation is total, your endpoint status will alter to InService. At this moment, the design is all set to accept reasoning requests through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is total, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative solutions utilizing AWS services and accelerated compute. Currently, he is focused on establishing strategies for fine-tuning and enhancing the inference performance of large language designs. In his spare time, Vivek takes pleasure in treking, enjoying motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing solutions that assist clients accelerate their AI journey and unlock company worth.